	$\begin{gathered} \mathrm{S} \\ \text { (object distance) } \end{gathered}$	$\begin{gathered} \mathrm{f} \\ \text { (focal length) } \end{gathered}$	R (Radius of Curvature)	$\begin{gathered} S^{\prime} \\ \text { (image distance) } \end{gathered}$
MIRROR	$\begin{gathered} + \\ \text { real object } \\ \text { (in front of mirror) } \end{gathered}$	Concave mirror	concave mirror	virtual image (back of mirror)
	virtual object (back of mirror)	convex mirror	convex mirror	real images (in front of mirror)
LENS	real object (in front of lens)	convex lens (thicker at center)	convex toward the object	+ real images (back of lens) (opposite side as object)
	virtual object (back of lens)	concave lens (thinner at center)	concave toward the object	virtual image (in front of lens) (same side as object)

Ray tracing for a converging lens:

a. A ray parallel to the axis refracts through the focal point
b. ($s>f$) A ray that enters the lens along a line through the near focal point emerges parallel to the axis ($\mathrm{s}<\mathrm{f}$) A ray along a line passing through the near focal point refracts parallel to the optical axis
c. A ray through the center of the lens does not bend

Ray tracing for a diverging lens:

a. A ray parallel to the axis diverges along a line through the near focal point
b. A ray along a line through the far focal point emerges parallel to the optical axis
c. A ray through the center of the lens does not bend

	S (object distance)	f (focal length)	R (Radius of Curvature)	(image distance)
MIRROR	real object (in front of mirror)	Concave mirror	concave mirror	virtual image (back of mirror)
virtual object (back of mirror)	convex mirror	convex mirror	real images (in front of mirror)	
	real object Lin front of lens)	convex lens (thicker at center)	convex toward the object	real images (back of lens) (opposite side as object)
	- virtual object (back of lens)	concave lens (thinner at center)	concave toward the object	virtual image (in front of lens) (same side as object)

Ray tracing for a converging lens:

a. A ray parallel to the axis refracts through the focal point
b. ($s>f$ f) A ray that enters the lens along a line through the near focal point emerges parallel to the axis ($\mathrm{s}<\mathrm{f}$) A ray along a line passing through the near focal point refracts parallel to the optical axis
c. A ray through the center of the lens does not bend

Ray tracing for a diverging lens:

a. A ray parallel to the axis diverges along a line through the near focal point
b. A ray along a line through the far focal point emerges parallel to the optical axis
c. A ray through the center of the lens does not bend

